杭州電子科技大學601數(shù)學分析專業(yè)課考試大綱
學習頻道 來源: 杭州電子科技大學 2024-07-20 大 中 小
杭州電子科技大學 全國碩士研究生入學考試業(yè)務課考試大綱
考試科目名稱:數(shù)學分析 科目代碼:601
一.極限與連續(xù)
考試內容: 數(shù)列極限、函數(shù)極限、函數(shù)的連續(xù)性和一致連續(xù)性、閉區(qū)間上連續(xù)函數(shù)的性質。
考試要求:
(1) 掌握函數(shù)的特殊性質:奇偶性、單調性、周期性、有界性等;
(2) 掌握各種極限的定義( 與 語言)以及如下性質與重要定理: 唯一性、有界性、保號性以及四則運算、單調有界定理、Cauchy收斂準則、迫斂性(兩邊夾法則、夾擠原則)原理、兩個重要極限;
(3) 掌握數(shù)列極限與函數(shù)極限的無窮大(。┝康幕靖拍钆c基本性質;
(4) 掌握連續(xù)性的概念及間斷點的分類,掌握初等函數(shù)的連續(xù)性;
(5) 掌握閉區(qū)間上連續(xù)函數(shù)的如下基本性質:有界性、最值性、介值性(零點定理)、一致連續(xù)性。
二.一元函數(shù)微分學
考試內容:導數(shù)與微分及其運算法則、三個微分中值定理、洛必達法則、泰勒公式、函數(shù)單調性、凸性與拐點、極值與最值。
考試要求:
(1) 理解連續(xù)、可導、可微等概念及其相互關系,理解導數(shù)的幾何意義、函數(shù)極值點與極值、凸性、拐點等概念,會用導數(shù)研究函數(shù)的單調性與極值性,會用二階導數(shù)研究函數(shù)的凸性與拐點;
(2) 掌握(高階)導數(shù)、微分的四則運算與復合函數(shù)求導運算法則以及高階導數(shù)的萊布尼茲公式,掌握左、右導數(shù)的概念以及分段函數(shù)求導方法,掌握導函數(shù)的介值定理(達布定理);
(3) 掌握微分中值定理及其在根的判定、不等式、不定式極限(洛必達法則)等方面的應用;
(4) 掌握泰勒公式及其在極限、極值點判定等方面的應用;
(5) 掌握極值與最值的求法、凸性的等價定義以及凸性在不等式證明等方面的應用。
三.實數(shù)的完備性
考試內容:上(下)確界、區(qū)間套、聚點、開覆蓋。
考試要求:
(1)掌握確界、聚點、區(qū)間套、開覆蓋等概念;
(2)理解關于實數(shù)完備性的六大基本定理及其證明思想;
(3)會用實數(shù)完備性定理,特別是用確界定理與閉區(qū)間套定理證明簡單的分析問題。
四.一元函數(shù)積分學
考試內容:不定積分、定積分、換元法與分部積分法、牛頓萊布尼茲公式、變上限積分、積分中值定理、定積分在幾何中的應用、無窮積分、瑕積分。
考試要求:
(1) 掌握原函數(shù)、不定積分的概念及其基本性質;
(2) 熟記不定積分的基本公式,掌握換元積分法和分部積分法及其常用積分計算技巧,會求初等函數(shù)、有理函數(shù)和三角有理函數(shù)的不定積分;
(3) 掌握定積分的概念、可積條件、可積函數(shù)類;
(4) 掌握定積分的性質,熟練掌握微積分基本定理、定積分的換元積分法和分部積分法以及常用積分計算技巧,掌握積分中值定理及其應用;
(5) 掌握變限積分的性質與求導方法;
(6) 能用定積分計算平面圖形的面積、弧長、旋轉體的體積與側面積;
(7) 理解廣義積分收斂的概念、Cauchy收斂準則,掌握廣義積分斂散性的比較判別法、柯西判別法、狄利克雷判別法、阿貝爾判別法。
五.無窮級數(shù) http://yz.xuecan.net/shumu/612.html
考試內容:數(shù)項級數(shù)、絕對收斂和條件收斂、判別法、函數(shù)項級數(shù)、一致收斂、冪級數(shù)、收斂半徑、收斂域、(冪級數(shù))泰勒級數(shù)、傅立葉級數(shù)。
考試要求:
(1) 理解數(shù)項級數(shù)斂散性的概念,掌握數(shù)項級數(shù)的基本性質;
(2) 掌握正項級數(shù)的比較判別法、根式判別法和積分判別法;
(3) 掌握一般項級數(shù)的萊布尼茲判別法、狄利克雷判別法和阿貝爾判別法;
(4) 掌握函數(shù)項級數(shù)(函數(shù)列)一致收斂性的M-判別法、狄利克雷判別法和阿貝爾判別法, 掌握函數(shù)項級數(shù)(函數(shù)列)的分析性質(連續(xù)性、可微性、可積性);
(5) 掌握冪級數(shù)收斂半徑與收斂域的概念與求法、掌握冪級數(shù)的基本性質,會求冪級數(shù)(級數(shù))的和函數(shù)(和),能夠將函數(shù)展開為冪級數(shù);
(6) 會將函數(shù)按要求展開成傅立葉級數(shù)(余弦級數(shù)、正弦級數(shù))。
六.多元函數(shù)微分學
考試內容:多元函數(shù)的極限與連續(xù)、全微分、(高階)偏導數(shù)、方向導數(shù)、泰勒公式、隱函數(shù)求導及幾何應用。
考試要求:
(1) 掌握多元函數(shù)極限、偏導數(shù)、全微分、方向導數(shù)的概念及其求法;
(2) 掌握高階偏導數(shù)的計算、簡單多元函數(shù)泰勒公式的展開;
(3) 掌握多元函數(shù)的極值、條件極值的概念及其判別方法;
(4) 掌握隱函數(shù)與隱函數(shù)組求導與求偏導方法及其幾何應用。
七.含參變量積分
考試內容:含參變量正常積分,含參變量反常積分、伽馬函數(shù)、貝塔函數(shù)。
考試要求:
(1) 掌握含參變量正常積分的分析性質;
(2) 掌握含參變量反常積分的一致收斂性及判別法;
(3) 掌握含參變量反常積分的分析性質;
(4) 掌握伽馬函數(shù)與貝塔函數(shù)的性質與相互關系;
八.重積分、曲線積分和曲面積分
考試內容:重積分、第一(二)型曲線積分、第一(二)型曲面積分、格林公式、高斯公式、斯托克斯公式。
考試要求:
(1)理解重積分、第一(二)型曲線積分、第一(二)型曲面積分的概念、基本性質與幾何意義;
(2)掌握二重積分與三重積分的常用計算方法、常用坐標變換以及一般坐標變換;
(3)掌握第一(二)型曲線積分、第一(二)型曲面積分的計算;
(4)會用格林公式、高斯公式、斯托克斯公式處各種積分計算問題。
(5)了解重積分、第一(二)型曲線積分、第一(二)型曲面積分之間的聯(lián)系。
參考書目:數(shù)學分析,《數(shù)學分析》(第三版)(上、下),華東師范大學數(shù)學系編,高等教育出版社,2001.6
http://yz.xuecan.net/shumu/612.html
陽光文庫 http://m.ukshopfit.com/wenku/